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Wetland Ecosystems
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Topographic Control

Topography controls downslope flow of resources (i.e. water and nutrients).

Topography affects wetness (water table depth and soil moisture content),
evapotranspiration and gross ecosystem productivity (Sonnentag et al. 2008).

Study in Mer Bleue peatland, Canada showed that model underestimate daily ET and
gross ecosystem productivity by ~10 — 12% when topographically driven lateral
subsurface fluxes were neglected from the model framework (Sonnentag et al. 2008).
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Self-Organizing Controls

Through spatial feedbacks, vegetation is able to actively modify its environment

and maximize resource flows towards it. .. .
Self-organizing mechanisms:

Patch Level Control - Ponding (Swanson and Grigal,
1988)
- Peat Accumulation (Hilbert et al,
Nutrient Nutrient 2000) ] ] ]
and C and - Nutrient Accumulation (Rietkerk et
Water Water al, 2004)

- Sediment-Flow-Vegetation
Feedback (Larsen et al, 2007)
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Objectives

Demonstrate how these first order controls (Topography and self-organizing
mechanisms) together can impact:

(1) spatial vegetation patterning

(2) vegetation growth dynamics of a nutrient limited ecosystem
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Nutrient Accumulation Mechanism

Proposed by Rietkerk et al (2004) to explain pattern formation in bogs.

Self-organization caused by convective transport of nutrients in the groundwater
toward areas with higher vascular plant biomass, driven by differences in
transpiration rate.
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Governing Equations

Plant Biomass, B
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Governing Equations: Advection
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Global advection due to topography.
Cheng et al, 2011 (GRL).



Governing Equations: Diffusion
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Governing Equations: Reaction
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Spatial Patterning



Interactive effects of plant transpiration (self organizing mechanism) and slope

(topography) on resulting pattern.
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Interactive effects of effective anisotropic hydraulic conductivity (self organizing

mechanism) and slope (topography) on resulting pattern.
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Vegetation Growth Dynamics



Models

1. Topographic Control + Self-Organizing Control (TC + SO)
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Constant Nutrient Inputs

Average Nutrient Influx (Case 1)
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Average Nutrient Input (Case 2)
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Putting it together: Effects of slope and nutrient
Inputs on biomass growth
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1) Accumulation of biomass is always greater when both topographic and self-
organizing processes are accounted for



Putting it together: Effects of slope and nutrient
Inputs on biomass growth
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1) Accumulation of biomass is always greater when both topographic and self-
organizing processes are accounted for

2) As nutrient availability is increased, topography increasingly exerts it’s control.
As nutrient availability is reduced, self-organizing processes increasingly exert
their control



Implications of findings on the simulation of
wetland dynamics

(1) TC+SO models yield higher net primary productivity (NPP) than TC only
models. While TC only models can be calibrated to match the observed NPP at
present, during prediction, the simulated NPP can still become biased.

(2) High nutrient and/or topographic gradients lead to spatially-uniform vegetation
dynamics. Results suggest that TC only models may sufficiently represent
growth dynamics of peatlands with:

« high nutrient inputs and/or are located on
« terrains with relatively high topographic gradients (note: 0 - 0.03 m m-
observed for northern peatlands [Belyea, 2007]).

(3) Transient simulations are more suitable for predicting system trajectory under
chronic perturbations. In the northern bogs, chronic N deposition has been
identified as a perturbation to the ecosystems [Galloway, 2004]. Memory of the
system needs to be taken into consideration when studying how N addition will
affect system productivity and dynamics in the future.




NATIONAL
! PARK
SERVICE

Acknowledgement

This research was supported in part by the following NSF

7 grants: 0439620, 0922100 and 1027870.

As well as by a grant from the Everglades National Park
(H5297-09-0011).

Yiwei Cheng was additionally supported in part by an

w0 EVerglades Foundation Fellowship from the Everglades

Foundation.



